Abstract

Knowledge acquisition is perhaps the most important phase in the development of knowledge‐based systems (KBSs). Problems associated with knowledge acquisition include creating an explicit model of handling uncertainty for solving models in a complex domain. This article illustrates how knowledge modeling facilitates the acquisition of knowledge that is vague and uncertain. A hierarchical model is adopted for knowledge acquisition. The domain of the problem, i.e., damage assessment and vulnerability analysis of structures subjected to cyclones, is characterized by the presence of uncertainties in various forms. A KBS based on the hierarchical knowledge model has been developed that has the flexibility to handle the uncertainties using probabilistic and fuzzy set approaches depending on the nature of uncertainty. The hierarchical model for handling complexities and uncertainties in knowledge, the knowledge‐acquisition strategy, the inference mechanism, and the representation used are described. Two typical sessions, one for damage assessment and another for vulnerability analysis, are presented to demonstrate the working of the KBS and its efficacy in handling uncertain information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.