Abstract

In this paper, a novel algorithm based on sparse identification, subsampling and co-teaching is developed to mitigate the problems of highly noisy data from sensor measurements in modeling of nonlinear systems. Specifically, sparse identification is combined with subsampling, a method where a fraction of the data set is randomly sampled and used for model identification, as well as co-teaching, a method that mixes noise-free data from first-principles simulations with the noisy measurements to provide a mixed data set that is less corrupted with noise for model training. The proposed method is bench-marked against sparse identification without subsampling as well as subsampling but without co-teaching using two examples, a predator-prey system and a chemical process, both of which are modeled as nonlinear systems of ordinary differential equations. It was shown that the proposed method yields better models in terms of prediction accuracy in the presence of high noise levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.