Abstract

New approach to deal with food authentication by modelling methods based on data recorded from different sources is proposed and called OC-PLS, combines an orthogonalization step between the different data sets to eliminate redundant information followed by definition of an acceptance area for a target class by OC-PLS. The proposed method was evaluated in two case studies. The first study used a controlled scenario with simulated data. In the second case study, the approach was applied using UV–VIS and IR data, in order to differentiate Slovak Tokaj Selection wines of high quality from other lower market value wines from the Slovak Tokaj wine region. In both cases, better results were reached than when individual blocks of data were achieved. The proposed method proved to be effective in properly exploring common and distinct information in each data block. The best compromise between sensitivity and selectivity in the prediction step was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.