Abstract
Missing data are an inevitable part of research and lead to a decrease in the size of the analyzable population, and biased and imprecise estimates. In this article, we discuss the types of missing data, methods to handle missing data and suggest ways in which missing data can be minimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.