Abstract

Researchers by default tend to choose complex models when analyzing nonindependent response variable data, this may be particularly applicable in the analysis of longitudinal trial data, possibly due to the ability of such models to easily address missing data by default. Both maximum-likelihood (ML) estimation and multiple imputation (MI) are well-known to be acceptable methods for handling missing data, but much of the recently published quantitative literature has addressed questions regarding the research designs and circumstances under which one should be chosen over the other. The purpose of this article is threefold. First, to clearly define the assumptions underlying three common longitudinal trial data analysis models for continuous dependent variable data: repeated measures analysis of covariance (RM-ANCOVA), generalized estimating equation (GEE), and a longitudinal linear mixed model (LLMM). Second, to clarify when ML or MI should be chosen, and to introduce researchers to an easy-to-use, empirically well-validated, and freely available missing data multiple imputation program: BLIMP. Third, to show how missing longitudinal trial data can be handled in the three data analysis models using three popular statistical analysis software packages (SPSS, Stata, and R) while keeping the published quantitative research in mind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.