Abstract
The topic of missing data has been receiving increasing attention, with calls to apply advanced methods of handling missingness to counseling psychology research. The present study sought to assess whether advanced methods of handling item-level missing data performed equivalently to simpler methods in designs similar to those counseling psychologists typically engage in. Results of an initial preliminary analysis, an analysis using real-world data, and a series of simulation studies were used in the present investigation. Results indicated that available case analysis, mean substitution, and multiple imputation had similar results across low levels of missing data, though in data with higher levels of missing data and other problems (e.g., small sample size or scales with weak internal reliability) mean substitution produced inflation of correlation coefficients among items. The present results support the use of available case analysis when dealing with low-level item-level missingness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.