Abstract

We investigate the sequential modeling problem and introduce a novel gating mechanism into the temporal convolutional network architectures. In particular, we introduce the gated temporal convolutional network architecture with elaborately tailored gating mechanisms. In our implementation, we alter the way in which the gradients flow and avoid the vanishing or exploding gradient and the dead ReLU problems. The proposed GTCN architecture is able to model the irregularly sampled sequences as well. In our experiments, we show that the basic GTCN architecture is superior to the generic TCN architectures in various benchmark tasks requiring the modeling of long-term dependencies and irregular sampling intervals. Moreover, we achieve the state-of-the-art results on the permuted sequential MNIST and the sequential CIFAR10 benchmarks with the basic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.