Abstract
In clinical settings, a lot of medical image datasets suffer from the imbalance problem which hampers the detection of outliers (rare health care events), as most classification methods assume an equal occurrence of classes. In this way, identifying outliers in imbalanced datasets has become a crucial issue. To help address this challenge, one-class classification, which focuses on learning a model using samples from only a single given class, has attracted increasing attention. Previous one-class modeling usually uses feature mapping or feature fitting to enforce the feature learning process. However, these methods are limited for medical images which usually have complex features. In this paper, a novel method is proposed to enable deep learning models to optimally learn single-class-relevant inherent imaging features by leveraging the concept of imaging complexity. We investigate and compare the effects of simple but effective perturbing operations applied to images to capture imaging complexity and to enhance feature learning. Extensive experiments are performed on four clinical datasets to show that the proposed method outperforms four state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.