Abstract

Cooperative adaptive cruise control (CACC) systems are a candidate to improve highway capacity by shortening headways and attenuating traffic disturbances. Although encouraging results have been obtained until now, a wide range of traffic circumstances has to be investigated in order to get reliable CACC systems driving on real roads. Among them, handling both vehicle-to-vehicle (V2V) communications-equipped and unequipped vehicles merging into the string of CACC vehicles is a commonly mentioned challenge. In this article, an algorithm for managing the transitions in response to cut-ins from V2V- or non-V2V-equipped vehicles is developed and tested using a string of four CACC vehicles. A CACC controller is implemented in four production Infiniti M56s vehicles and tested in real traffic, where non-V2V-equipped vehicles can cut in. The effects of a vehicle performing a cut-out are also investigated. Then responses to cut-ins by equipped and nonequipped vehicles are simulated for longer strings of vehicles using car-following models for both the production adaptive cruise control (ACC) system and the newly developed CACC controller. Results demonstrate that the CACC system is able to handle cut-in vehicles without causing major perturbations, while also reducing significantly the impact of this maneuver on the following vehicles, improving traffic flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call