Abstract

This paper implements a machine learning(ML)-based procedure for constructing the missing sensor(s) data in a net zero energy building in case of complete failure in data recording (for up to one hour). In the first scenario, missing temperature data is re-created using the sensor's ex-ante data, the HVAC system's status flag, and the ambient conditions. In the second scenario, the temperature data (until failure occurred) from two close-by spaces are also utilized as inputs. For each scenario, ML-based pipelines' performance is first assessed by considering different prediction horizons using a benchmark algorithm. Next, each pipeline's most promising features and the most suitable algorithm are identified. Using the obtained optimal pipeline, a sliding window-based training scheme is implemented, and the size of the training window is optimized. It is shown that feature selection, algorithm optimization procedures, and the sliding window-based training scheme notably improve the forecasting performance. The proposed methodology can be deployed as a tool in intervals with total data logging failure, providing data to ML-based controllers in smart buildings and avoiding disruptions in the building management system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.