Abstract

A post-processing technique for Support Vector Machine (SVM) algorithms for binary classification problems is introduced in order to obtain adequate accuracy on a priority class (labelled as a positive class). That is, the true positive rate (or recall or sensitivity) is prioritized over the accuracy of the overall classifier. Hence, false negative (or Type I) errors receive greater consideration than false positive (Type II) errors during the construction of the model.This post-processing technique tunes the initial bias term once a solution vector is learned by using standard SVM algorithms in two steps: First, a fixed threshold is given as a lower bound for the recall measure; second, the true negative rate (or specificity) is maximized.Experiments, carried out on eleven standard UCI datasets, show that the modified SVM satisfies the aims for which it has been designed. Furthermore, results are comparable or better than those obtained when other state-of-the-art SVM algorithms and other usual metrics are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.