Abstract
Abstract Handheld sun photometers are typically used to make aerosol optical depth measurements while on the ground. Various investigators, in unrelated efforts, have used handheld sun photometers to make aerosol optical depth measurements from light aircraft, but the strengths and weakness of this approach have not been characterized until now. While the ease and relatively low cost of an aircraft manual sun photometer are attractive, determining if the sun photometer was correctly pointed at the sun for each measurement is the biggest challenge. This problem can be partially addressed by collecting a large number of measurements at each altitude, then manually removing the largest optical depths (misalignment always results in erroneous larger values). Examples of past aircraft manual sun photometer measurements are demonstrating that it is possible to obtain quantitative measurements if sufficient sun photometer measurements are made at each elevation. In order to improve on manual sun photometer measurements, a small webcam was attached to the side of a Microtops sun photometer, and the Microtops sun photometer was triggered by computer control. By detecting the position of the sun in the webcam image, it is possible to determine whether the sun photometer was pointed at the sun correctly when the aerosol optical depth measurement was made. Unfortunately, it was found that the Microtops sun photometer takes ∼1.1 s to scan over the five wavelength channels. This 1.1-s delay proved to be too long, preventing the proposed approach from working as the aircraft was bouncing around.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.