Abstract

A handheld, forward-imaging, laser-scanning confocal microscope (LSCM) demonstrating optical sectioning comparable with microtome slice thicknesses in conventional histology, targeted towards interventional imaging, is reported. Fast raster scanning (approximately 2.5 kHz line scan rate, 3.0-5.0 frames per second) was provided by a 2-axis microelectromechanical system (MEMS) scanning mirror fabricated by a method compatible with complementary metal-oxide-semiconductor (CMOS) processing. Cost-effective rapid-prototyped packaging combined the MEMS mirror with micro-optical components into a probe with 18 mm outer diameter and 54 mm rigid length. ZEMAX optical design simulations indicate the ability of the handheld optical system to obtain lateral resolution of 0.31 and axial resolution of 2.85 microm. Lateral and axial resolutions are experimentally measured at 0.5 microm and 4.2 microm respectively, with field of view of 200 x 125 microm. Results of reflectance imaging of ex vivo swine liver, and fluorescence imaging of the expression of cytokeratin and mammaglobin tumor biomarkers in epithelial human breast tissue from metastatic breast cancer patients are presented. The results indicate that inexpensive, portable handheld optical microscopy tools based on silicon micromirror technologies could be important in interventional imaging, complementing existing coarse-resolution techniques to improve the efficacy of disease diagnosis, image-guided excisional microsurgery, and monitored photodynamic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.