Abstract

Handheld Raman systems have become powerful analytical tools for the detection and identification of hazardous chemical materials that are now commonly used by both the civilian and military communities. Due to the availability of compact lasers and sensitive detectors, systems typically operate at 785 nm. However, the Raman return at this wavelength can still be obscured by fluorescent impurities in the targeted materials or their matrices. To potentially mitigate this shortcoming, a prototype dual-wavelength Raman incorporating both 785- and 1064-nm excitations was developed and assessed at the Edgewood Chemical Biological Center. The results of that evaluation are discussed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call