Abstract

The effects of handedness on bimanual isofrequency coordination (e.g., phase advance of the dominant limb) have been suggested to result from an asymmetry in interlimb coupling strength, with the non-dominant limb being more strongly influenced by the dominant limb than vice versa. A formalized version of this hypothesis was tested by examining the phase adjustments in both limbs in response to mechanical perturbation of the bimanual coordination pattern and during frequency-induced phase transitions, for both right- and left-handed participants. In both situations, the phase adaptations were made predominantly by the non-dominant limb in right-handers, whereas this effect failed to reach significance in left-handers. Thus, the asymmetry in coupling strength was less pronounced in the latter group. In addition, the degree of asymmetry depended on movement frequency. The observed asymmetry was discussed in relation to pertinent neurophysiological findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call