Abstract

Left-handers show lower asymmetry in manual ability when compared to right-handers. Unlike right-handers, left-handers do not show larger deactivation of the ipsilateral primary sensorimotor (SM1) cortex on functional magnetic resonance imaging when moving their dominant than their nondominant hand. However, it should be noted that morphometric MRI studies have reported no differences between right-handers and left-handers in volume, thickness, or surface area of the SM1 cortex. In this regard, magnetization transfer (MT) imaging is a technique with the potential to provide information on microstructural organization and macromolecular content of tissue. In particular, MT ratio index of the brain gray matter is assumed to reflect the variable content of afferent or efferent myelinated fibers, with higher MT ratio values being associated with increased fibers number or degree of myelination. The aim of this study was hence to assess, for the first time, through quantitative MT ratio measurements, potential differences in microstructural organization/characteristics of SM1 cortex between left- and right-handers, which could underlay handedness side. Nine left-handed and 9 right-handed healthy subjects, as determined by the Edinburgh handedness inventory, were examined with T1-weighted and MT-weighted imaging on a 3 T scanner. The hands of subjects were kept still during all acquisitions. Using FreeSurfer suite and the automatic anatomical labeling parcellations defined by the Destrieux atlas, we measured MT ratio, as well as cortical thickness, in three regions of interests corresponding to the precentral gyrus, the central sulcus, and the postcentral gyrus in the bilateral SM1 cortex. No significant difference between left- and right-handers was revealed in the thickness of the three partitions of the SM1 cortex. However, left-handers showed a significantly (p = 0.007) lower MT ratio (31.92% ± 0.96%) in the right SM1 central sulcus (i.e., the hand representation area for left-handers) as compared to right-handers (33.28% ± 0.94%). The results of this preliminary study indicate that quantitative MT imaging, unlike conventional morphometric MRI measurements, can be a useful tool to reveal, in SM1 cortex, potential microstructural correlates of handedness side.

Highlights

  • Lateralization, i.e., structural or functional difference between the left and the right cerebral hemisphere of the brain, is a fundamental principle of brain organization in vertebrate and perhaps in invertebrate animals [1, 2]

  • Previous structural Magnetic resonance imaging (MRI) studies have reported no differences between right-handers and lefthanders in volume, thickness, or surface area of SM1 cortex, especially in the central sulcus [3, 6, 7, 9, 10] where hand motor function is localized according to the homunculus [3, 7]

  • We considered the FreeSurfer automatic anatomical labeling parcellations defined by the Destrieux atlas which includes, within each SM1 cortical area, three regions of interests (ROIs) corresponding to the precentral gyrus, the central sulcus, and the postcentral gyrus [28] (Figure 1)

Read more

Summary

Introduction

Lateralization, i.e., structural or functional difference between the left and the right cerebral hemisphere of the brain, is a fundamental principle of brain organization in vertebrate and perhaps in invertebrate animals [1, 2]. Magnetic resonance imaging (MRI) has been used to explore possible brain functional and structural correlates of handedness side [3,4,5,6,7,8]. Previous structural MRI studies have reported no differences between right-handers and lefthanders in volume, thickness, or surface area of SM1 cortex, especially in the central sulcus [3, 6, 7, 9, 10] where hand motor function is localized according to the homunculus [3, 7]. One study has reported an increased cortical thickness in the right superior temporal gyrus in the left-handed subjects as compared to right-handed subjects [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call