Abstract

In this paper, we have presented a new approach to recognize hand signs. In our approach, motion understanding (the hand movement) is tightly coupled with spatial recognition (hand shape). The system uses the multiclass, multidimensional discriminant analysis to automatically select the most discriminating features for gesture classification. A recursive partition tree approximator is proposed to do classification. This approach combined with our previous work on the hand segmentation forms a new framework which addresses three key aspects of the hand sign interpretation, that is the hand shape, the location, and the movement. The framework has been tested to recognize 28 different hand signs. The experimental results show that the system can achieve a 93.1% recognition rate for test sequences that have not been used in the training phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.