Abstract

Modern humans possess a highly derived thumb that is robust and long relative to the other digits, with enhanced pollical musculature compared with extant apes. Researchers have hypothesized that this anatomy was initially selected for in early Homo in part to withstand high forces acting on the thumb during hard hammer percussion when producing stone tools. However, data are lacking on loads experienced during stone tool production and the distribution of these loads across the hand.Here we report the first quantitative data on manual normal forces (N) and pressures (kPa) acting on the hand during Oldowan stone tool production, captured at 200 Hz. Data were collected from six experienced subjects replicating Oldowan bifacial choppers. Our data do not support hypotheses asserting that the thumb experiences relatively high loads when making Oldowan stone tools. Peak normal force, pressure, impulse, and the pressure/time integral are significantly lower on the thumb than on digits 2 and/or digit 3 in every subject. Our findings call into question hypotheses linking modern human thumb robusticity specifically to load resistance during stone tool production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.