Abstract

Despite the similarity of ionic liquid and zwitterion, their some properties such as conductivity and hydrophobicity are different. Here we developed a novel phosphonium salt having a dynamic covalent bond between anion and cation, enabling reversible structural shift between free ion pair and zwitterion. With the phosphonium salt, control of the macroscopic phase behavior in aqueous solution, i.e. forming mono- or bi-phasic systems, upon exposure to an acid or base was reversibly achieved, based on the structural shift of the phosphonium salt. CO2/N2 bubbling reversibly changed the phase behavior as well as acid/base, leading to green separation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.