Abstract

Urinalysis is an effective strategy to non-invasively evaluate human health, and surface-enhanced Raman scattering (SERS) may be a powerful technique for use in detecting analytes in urine. Herein, we report a wearable diaper sensor based on a handheld Raman spectrometer for use in the simple, label-free identification of biomolecules (urea, creatinine, and bilirubin) in urine. The raspberry-shaped Au substrate formed on the surface of an Si wafer provides plasmonic enhancement of the SERS signals, with an excellent uniformity and stability. The SERS sensor combines the advantages of flexibility, portability, and multifunctional detection and may be used in identifying multiple analytes in urine. The sensor exhibits high sensitivities in detecting urea, creatinine, and bilirubin, with respective detection limits of 4.17 × 10−3 M, 5.90 × 10−6 M, and 1.38 × 10−7 M (signal-to-noise ratio = 3). Furthermore, we used the wearable diaper sensor to monitor biomolecules at the diagnostic threshold, facilitating non-invasive diagnosis and medical monitoring of disease-related biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.