Abstract
In this work, we study the ability to use hand gestures for human-machine interaction from wrist-worn sensors. Towards this goal, we design a wrist-worn prototype to capture RGB video stream of hand gestures. Then we built a new wrist-worn gesture dataset (named WiGes) with various subjects in interaction with home appliances in different environments. To the best of our knowledge, this is the first benchmark released for studying hand gestures from a wrist-worn camera. We then evaluate various CNN models for vision-based recognition. Furthermore, we deeply analyze the models that produce the best trade-off between accuracy, memory requirement, and computational cost. We point out that among studied architectures, MoviNet produces the highest accuracy. Then, we introduce a new MoviNet-based two-stream architecture that takes both RGB and optical flow into account. Our proposed architecture increases the Top-1 accuracy by 1.36% and 3.67% according to two evaluation protocols. Our dataset, baselines, and proposed model analysis give instructive recommendations for human-machine interaction using hand-held devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.