Abstract

In many studies and applications that include direct human involvement such as human-robot interaction, control of prosthetic arms, and human factor studies, hand force is needed for monitoring or control purposes. The use of inexpensive and easily portable active electromyogram (EMG) electrodes and position sensors would be advantageous in these applications compared to the use of force sensors which are often very expensive and require bulky frames. Among non model-based estimation methods, “Multilayer Perceptron” Artificial Neural Networks (MLPANN) have widely been used to estimate muscle force or joint torque of different anatomy of humans or animals. This paper investigates the use of Radial Basis Function (RBF) ANN and MLPANN for force estimation and compares the performance of the two methodologies for the same human anatomy, i.e. hand force estimation, under an ensemble of operational conditions. In this unified study, the EMG signal readings from upper arm muscles involved in elbow joint movement and sensed elbow angular position and velocity are utilized as inputs to ANNs. Moreover, the use of elbow angular acceleration signal as input for ANN is investigated. Towards this end, a single degree-of-freedom robotic experimental testbed has been constructed, which allows for data collection, training and validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.