Abstract
In this paper, we propose a non-linear calibration method for hand-eye system equipped with a camera undergoing radial distortion as the rigid endoscope. Whereas classic methods propose either a separated estimation of the camera intrinsics and the hand-eye transform or a mixed non-linear estimation of both hand-eye and camera intrinsics assuming a pin-hole model, the proposed approach enables a simultaneous refinement of the hand-eye and the camera parameters including the distortion factor with only three frames of the calibrated pattern. Our approach relies on three steps: (i) linear initial estimates of hand-eye and radial distortion with minimum number of frames: one single image to estimate the radial distortion and three frames to estimate the initial hand-eye transform, (ii) we propose to express the camera extrinsic with respect to hand-eye and world-grid transforms and (iii) we run bundle adjustment on the reprojection error with respect to the distortion parameters, the camera intrinsics and the hand-eye transform. Our method is quantitatively compared with state-of-the-art linear and non-linear methods. We show that our method provides a 3D reconstruction error of approximately 5% of the size of the 3D shape. Our experimental results show the effectiveness of simultaneously estimating hand-eye and distortion parameters for 3D reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Medical Robotics and Computer Assisted Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.