Abstract
We have studied the effects of multiple, competing spatial modes that are excited by a quantum quench of an antiferromagnetic spinor Bose–Einstein condensate. We observed Hanbury Brown–Twiss correlations and associated super-Poissonian noise in the mode populations. The decay of these correlations was consistent with experimentally observed spin domain patterns. Data were compared with a real-space Bogoliubov theory as well as numerical solution of the coupled Gross–Pitaevskii equations that were seeded by quantum noise via the truncated Wigner approximation. The spatial modes that were both observed experimentally and deduced theoretically are intimately connected to the inhomogeneous density profile of the condensate. Unique features were observed not present in a homogeneous system, including unstable modes located near the center of the cloud, where the dynamics were initiated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.