Abstract

It has recently been shown that graft fixation close to the ACL insertion site is optimal in order to increase anterior knee stability. Hamstring tendon fixation using interference screws offers this possibility and a round threaded titanium interference screw has been previously developed. The use of a round threaded biodegradable interference screw may be equivalent. In addition, to increase initial fixation strength, graft harvest with a distally attached bone plug may be advantageous, but biomechanical data do not exist. This study compares the initial pullout force, stiffness of fixation, and failure modes of three strand semitendinosus grafts in 36 proximal calf tibiae using either biodegradable poly-(D,L-lactide) (Sysorb; Sulzer Orthopaedics Ltd, Munsingen, Switzerland) or round threaded titanium (RCI; Smith & Nephew DonJoy, Carlsbad, CA) interference screws, harvested either without (biodegradable: group I, titanium III) or with (biodegradable: group II, titanium: group IV) attached tibial bone plugs. Maximum pullout force in group I (507 ± 93 N) was significantly higher than in group III (419 ± 77 N). Pullout force of bone plug fixation was significantly higher than that of direct tendon fixation (717 ± 90 N in group II and 602 ± 117 N in group IV). Pullout force of biodegradable fixation was significantly higher in both settings. These results indicate that initial pullout force of hamstring-tendon graft interference screw fixation can be increased by using a biodegradable interference screw. In addition, initial pullout force of hamstring-tendon graft fixation with an interference screw can be greatly increased by harvesting the graft with its distally attached tibial bone plug. Arthroscopy 1998 Jan-Feb;14(1):29-37

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.