Abstract

Zero-day polymorphic worms pose a serious threat to the security of Internet infrastructures. Given their rapid propagation, it is crucial to detect them at edge networks and automatically generate signatures in the early stages of infection. Most existing approaches for automatic signature generation need host information and are thus not applicable for deployment on high-speed network links. In this paper, we propose Hamsa, a network-based automated signature generation system for polymorphic worms which is fast, noise-tolerant and attack-resilient. Essentially, we propose a realistic model to analyze the invariant content of polymorphic worms which allows us to make analytical attack-resilience guarantees for the signature generation algorithm. Evaluation based on a range of polymorphic worms and polymorphic engines demonstrates that Hamsa significantly outperforms Polygraph (J. Newsome et al., 2005) in terms of efficiency, accuracy, and attack resilience

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.