Abstract

We show, given a binary integer function diamond that is piecewise polynomial, that (+,diamond) vector products are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include the dominance and l_{2p+1} distances for constant p. Our results imply equivalence (up to polylog factors) between the complexity of computing All Pairs Hamming Distance, All Pairs l_{2p+1} Distance and Dominance Matrix Product, and equivalence between Hamming Distance Pattern Matching, l_{2p+1} Pattern Matching and Less-Than Pattern Matching. The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are likely to be optimal, given lack of progress in improving upper bounds for Hamming distance in the past 30 years. While reductions between selected pairs of products were presented in the past, our work is the first to generalize them to a general class of functions, showing that a wide class of intermediate complexity problems are in fact equivalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.