Abstract

Sum-rank Hamming codes are introduced in this work. They are essentially defined as the longest codes (thus of highest information rate) with minimum sum-rank distance at least 3 (thus one-error-correcting) for a fixed redundancy r, base-field size q and field-extension degree m (i.e., number of matrix rows). General upper bounds on their code length, number of shots or sublengths and average sublength are obtained based on such parameters. When the field-extension degree is 1, it is shown that sum-rank isometry classes of sum-rank Hamming codes are in bijective correspondence with maximal-size partial spreads. In that case, it is also shown that sum-rank Hamming codes are perfect codes for the sum-rank metric. Also in that case, estimates on the parameters (lengths and number of shots) of sum-rank Hamming codes are given, together with an efficient syndrome decoding algorithm. Duals of sum-rank Hamming codes, called sum-rank simplex codes, are then introduced. Bounds on the minimum sum-rank distance of sum-rank simplex codes are given based on known bounds on the size of partial spreads. As applications, sum-rank Hamming codes are proposed for error correction in multishot matrix-multiplicative channels and to construct locally repairable codes over small fields, including binary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.