Abstract
In Japan, the deterioration of industrial plants built during the period of high economic growth in the middle of the 20th century has recently become a social concern. Corrosion under insulation (CUI) of piping in such plants is a pressing problem. X-ray and ultrasound inspections are conventional methods for detecting CUI; however, these methods are time-consuming and expensive. Therefore, rapid and low-cost screening techniques for CUI are required. We develop a hammering-type inspection robot system that moves inside the piping and records hammering sounds. Furthermore, we propose an acoustic analysis method to identify anomalous parts from the hammering sound using machine learning techniques. Using three testing pipes, we can successfully identify anomalous parts through acoustic analysis using a deep neural network as a supervised learning method. However, in practical piping inspections, the detection of anomalies without training data is required for further applications. Therefore, we investigate unsupervised learning anomaly detection using an autoencoder and a variational autoencoder and report the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.