Abstract

This paper deals with the Hamilton equations of motion and non conservative forces. The paper will show how the Hamilton formalism may be expanded so that the auxiliary equations for any problem may be found in any set of canonical variables, regardless of the nature of the forces involved. Although the expansion does not bring us closer to an analytical solution of the problem, it's simplicity makes it worth noticing. The starting point is a conservative system (for instance a satellite orbiting an oblate planet) with a known Hamiltonian (K) and canonical variables {Q, P}. This system is placed under influence of a non-conservative force (for instance drag-force). The idea is then to use, as far as possible, the same definitions used in the conservative problem, in the process of finding the auxiliary equations for the perturbed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.