Abstract

In this paper, we consider the H/sub /spl infin// nonlinear state feedback control of constrained input systems. The input constraints are encoded via a quasi-norm that enables applying quasi L/sub 2/-gain analysis of the corresponding closed-loop nonlinear system. The quasi-norm allows using nonquadratic supply rates along with the theory of dissipative systems to formulate the robust optimal control problem for constrained input systems using the Hamilton-Jacobi-Isaacs (HJI) equation. Hence, the constrained optimal control problem is formulated as a closely related unconstrained problem. The saddle point strategy corresponding to the related zero-sum differential game is derived, and shown to be unique. Finally, an iterative solution technique based on the game theoretic interpretation of the HJI equation is presented. This iterative approach allows a deeper insight on the relation between the attenuation gain and the region of asymptotic stability of the H/sub /spl infin// controller for constrained input systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.