Abstract
This thesis studies optimal control problems on stratified domains. We first establish a known proximal Hamilton-Jacobi characterization of the value function for problems with Lipschitz dynamics. This background gives the motivation for our results for systems over stratified domains, which is a system with non-Lipschitz dynamics that were introduced by Bressan and Hong. We provide an example that shows their attempt to derive a Hamilton-Jacobi characterization of the value function is incorrect, and discuss the nature of their error. A new construction of a multifunction is introduced that possesses properties similar to those of a Lipschitz multifunction, and is used to establish Hamiltonian criteria for weak and strong invariance. Finally, we use these characterizations to show that the minimal time function and the value function for a Mayer problem, both over stratified domains, satisfy and are the unique solutions to a proximal Hamilton-Jacobi equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.