Abstract

We extend Hamilton–Jacobi theory to Lagrange–Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton–Jacobi equation as the Dirac–Hamilton–Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton–Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac–Hamilton–Jacobi equation reduces to a variant of the nonholonomic Hamilton–Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac–Hamilton–Jacobi equation can be used to exactly integrate the equations of motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.