Abstract

Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action functionals obtained by a generalization of Bogomolnyi’s trick of ‘dcompleting squares’. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the corresponding Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.