Abstract

This paper deals with the classical challenging free vibration problems of non-Lévy-type cylindrical shell panels, i.e., those without two opposite edges simply supported, by a Hamiltonian system-based symplectic superposition method. The governing equations of a vibrating cylindrical panel are formulated within the Hamiltonian system framework such that the symplectic eigen problems are constructed, which yield analytic solutions of two types of fundamental problems. By the equivalence between the superposition of the fundamental problems and the original problem, new analytic frequency and mode shape solutions of the panels with four different combinations of boundary conditions are derived. Comprehensive benchmark results are tabulated and plotted, which are useful for validation of other numerical/approximate methods. The primary advantage of the developed approach that no pre-determination of solution forms is needed enables one to pursue more analytic solutions of intractable shell problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call