Abstract

By exhibiting the corresponding Lax pair representations we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies which includes the 2D N=(2|2) and N=(0|2) supersymmetric TL hierarchies as particular cases. We develop the generalized graded R-matrix formalism using the generalized graded bracket on the space of graded operators with involution generalizing the graded commutator in superalgebras, which allows one to describe these hierarchies in the framework of the Hamiltonian formalism and construct their first two Hamiltonian structures. The first Hamiltonian structure is obtained for both bosonic and fermionic Lax operators while the second Hamiltonian structure is established for bosonic Lax operators only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.