Abstract
The two-dimensional Green–Naghdi (GN) shallow-water model for surface gravity waves is extended to incorporate the arbitrary higher-order dispersive effects. This can be achieved by developing a novel asymptotic analysis applied to the basic nonlinear water wave problem. The linear dispersion relation for the extended GN system is then explored in detail. In particular, we use its characteristics to discuss the well-posedness of the linearized problem. As illustrative examples of approximate model equations, we derive a higher-order model that is accurate to the fourth power of the dispersion parameter in the case of a flat bottom topography, and address the related issues such as the linear dispersion relation, conservation laws and the pressure distribution at the fluid bottom on the basis of this model. The original Green–Naghdi (GN) model is then briefly described in the case of an uneven bottom topography. Subsequently, the extended GN system presented here is shown to have the same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov's Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by rewriting the former system in terms of the momentum density instead of the velocity potential at the free surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.