Abstract

We report on the design of a Hamiltonian ratchet exploiting periodically at rest integrable trajectories in the phase space of a modulated periodic potential, leading to the linear nondiffusive transport of particles. Using Bose-Einstein condensates in a modulated one-dimensional optical lattice, we make the first observations of this spatial ratchet, which provides way to coherently transport matter waves with possible applications in quantum technologies. In the semiclassical regime, the quantum transport strongly depends on the effective Planck constant due to Floquet state mixing. We also demonstrate the interest of quantum optimal control for efficient initial state preparation into the transporting Floquet states to enhance the transport periodicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.