Abstract

A tight connection is exhibited between infinite paths in recursive trees and Hamiltonian paths in recursive graphs. A corollary is that determining Hamiltonicity in recursive graphs is highly undecidable, viz, Σ 1 1 -complete. This is shown to hold even for highly recursive graphs with degree bounded by 3. Hamiltonicity is thus an example of an interesting graph problem that is outside the arithmetic hierarchy in the infinite case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.