Abstract
Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A$ contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2v3···vt−1vt of distinct vertices v1, v2,⋖, vt and distinct arcs a1, ⋖, at−1 such that vi precedes vt−1 in a, 1 ≤ i ≤ t − 1. A cycle can be defined analogously. A path or cycle containing all vertices of T (as vi's) is Hamiltonian. T is strong if T has a path from x to y for every choice of distinct x, y ≡ V. We prove that every k-hypertournament on n (k) vertices has a Hamiltonian path (an extension of Redeis theorem on tournaments) and every strong k-hypertournament with n (k + 1) vertices has a Hamiltonian cycle (an extension of Camions theorem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle problem remains polynomial time solvable only for k ≤ 3 and becomes NP-complete for every fixed integer k ≥ 4. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 277–286, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.