Abstract

We develop a Hamiltonian optics formalism to quantitatively analyze a recently proposed scheme for increasing the delay-time-bandwidth product for microring resonator structures with varying ring resonances [Yang and Sipe, Opt. Lett. 32, 918 (2007)]. This theory is formally compact, simple and physically intuitive. We compare this formalism with the more rigorous transfer matrix method, and conclude that the Hamiltonian optics formalism correctly gives the average dispersion, which essentially determines the group delay as well as the dispersive distortion for pulses in the ps regime or longer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.