Abstract

This paper considers Hamiltonian identification for a controllable quantum system with non-degenerate transitions and a known initial state. We assume to have at our disposal a single scalar control input and the population measure of only one state at an (arbitrarily large) final time T. We prove that the quantum dipole moment matrix is locally observable in the following sense: for any two close but distinct dipole moment matrices, we construct discriminating controls giving two different measurements. Such discriminating controls are constructed to have three well defined temporal components, as inspired by Ramsey interferometry. This result suggests that what may appear at first to be very restrictive measurements are actually rich for identification, when combined with well designed discriminating controls, to uniquely identify the complete dipole moment of such systems. The assessment supports the employment of quantum control as a promising means to achieve high quality identification of a Hamiltonian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call