Abstract

The action which describes the interaction of gravitational and electron fields is expressed in canonical form. In addition to general covariance, it exhibits the local Lorentz invariance associated with four-dimensional rotations of the local orthonormal frames. The corresponding Hamiltonian constraints are derived and their (Dirac) bracket relations given. The derivative coupling of the gravitational tetrad and spinor fields is not present in the Hamiltonian, but rather in the unusual bracket relations of the field variables in the theory. If the timelike leg of the tetrad field is fixed to be normal to the x o = constant hyper-surfaces (“time gauge”) the derivative coupling drops from the theory in the sense that the relation between the gravitational velocities and momenta is the same as when the spinor fields are absent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.