Abstract

This paper presents an analysis of the Hamiltonian formulation for continuous systems with second-order derivatives derived from Dirac’s theory. This approach offers a unique perspective on the equations of motion compared to the traditional Euler–Lagrange formulation. Focusing on Podolsky’s generalized electrodynamics, the Hamiltonian and corresponding equations of motion are derived. The findings demonstrate that both Hamiltonian and Euler–Lagrange formulations yield equivalent results. This study highlights the Hamiltonian approach as a valuable alternative for understanding the dynamics of second-order systems, validated through a specific application within generalized electrodynamics. The novelty of the research lies in developing advanced theoretical models through Hamiltonian formalism for continuous systems with second-order derivatives. The research employs an alternative method to the Euler–Lagrange formulas by applying Dirac’s theory to study the generalized Podolsky electrodynamics, contributing to a better understanding of complex continuous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.