Abstract

We present an experimental demonstration of the Hamiltonian manipulation in light-atom interface in Raman-type warm rubidium-87 vapor atomic memory. By adjusting the detuning of the driving beam we varied the relative contributions of the Stokes and anti-Stokes scattering to the process of four-wave mixing which reads out a spatially multimode state of atomic memory. We measured the temporal evolution of the readout fields and the spatial intensity correlations between write-in and readout as a function of detuning with the use of an intensified camera. The correlation maps enabled us to resolve between the anti-Stokes and the Stokes scattering and to quantify their contributions. Our experimental results agree quantitatively with a simple, plane-wave theoretical model we provide. They allow for a simple interpretation of the coaction of the anti-Stokes and the Stokes scattering at the readout stage. The Stokes contribution yields additional, adjustable gain at the readout stage, albeit with inevitable extra noise. Here we provide a simple and useful framework to trace it and the results can be utilized in the existing atomic memories setups. Furthermore, the shown Hamiltonian manipulation offers a broad range of atom-light interfaces readily applicable in current and future quantum protocols with atomic ensembles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call