Abstract
Abstract Geostrophic flow in the theory of a shallow rotating fluid is exactly analogous to the drift approximation in a strongly magnetized electrostatic plasma. This analogy is developed and exhibited in detailed to derive equations for the slow nearly geostrophic motion. The key ingredient in the theory is the isolation, to whatever order in Rossby number desired, of the fast motion near the inertial frequency. One of the remaining degrees of freedom represents a new approximate constant of the motion for nearly geostrophic flow. This is the analogue of the familiar magnetic moment adiabatic invariant in the plasma problem. The procedure is a Rossby number expansion of the Hamiltonian for the fluid expressed in Lagrangian, rather than Eulerian variables. The fundamental Poisson brackets of the theory are not expanded so desirable properties such as energy conservation are maintained throughout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.