Abstract

We show that every regular tournament on n vertices has at least n!/(2 + o(1))n Hamiltonian cycles, thus answering a question of Thomassen [17] and providing a partial answer to a question of Friedgut and Kahn [7]. This compares to an upper bound of about O(n0.25n!/2n) for arbitrary tournaments due to Friedgut and Kahn (somewhat improving Alon's bound of O(n0.5n!/2n)). A key ingredient of the proof is a martingale analysis of self-avoiding walks on a regular tournament.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.