Abstract
The trace variational identity is generalized to zero curvature equations associated with non-semi-simple Lie algebras or, equivalently, Lie algebras possessing degenerate Killing forms. An application of the resulting generalized variational identity to a class of semi-direct sums of Lie algebras in the AKNS case furnishes Hamiltonian and quasi-Hamiltonian structures of the associated integrable couplings. Three examples of integrable couplings for the AKNS hierarchy are presented: one Hamiltonian and two quasi-Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.