Abstract

Interacting systems consisting of two rotators and a point mass near a hyperbolic fixed point are considered, in a case in which the uncoupled systems have three very different characteristic time scales. The abundance of quasi periodic motions in phase space is studied via the Hamilton-Jacobi equation. The main result, a high density theorem of invariant tori, is derived by the classical canonical transformation method extending previous results. As an application the existence of long heteroclinic chains (and of Arnol'd diffusion) is proved for systems interacting through a trigonometric polynomial in the angle variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.