Abstract

Taking the self-gravitation interaction and unfixed background space–time into account, we study the Hawking radiation of Kerr–Newman–Kasuya black holes using Hamilton–Jacobi method. The result shows that the tunneling rate is related to the change of Bekenstein–Hawking entropy and the radiation spectrum deviates from the purely thermal one, which is accordant with that obtained using Parikh and Wilczek's method and gives a correction to the Hawking radiation of the black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.